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IONIZATION ENERGIES OF LIQUIDS FROM ENERGY DISTRIBUTION, QUANTUM YIELD AND

SECOND DERIVATIVE CURVES

K. P. CHEUNG*, I. WATANABE*", A. DZIEDZIC, K. VON BURG*** AND P. DELAHAY

Department of Chemistry, New York University, 4 Washington Place, Room 514,

New York, N. Y. 10003 (U.S.A.)

(Received )

ABSTRACT

The energies of the lowest ionization band of eight liquids of low

vapor pressure are determined from energy distribution curves (EDC), quantum

yield spectra (collected electrons per incident photon as a function of photon4I

energy), and second derivative curves (SDC) of retarding potential curves.

Threshold energies from EDC's and quantum yield spectra agree if one takes

into account a 0.15 eV shift caused by the spectrometer's rather low

resolution and a small difference (0.15 eV or less) resulting from the use of

approximate extrapolation methods. Threshold energies from EDC's and SDC's

agree to within 0.1 eV after correction for the half-width of the high-energy

branch of SDC's. Multiple ionization bands are exhibited by the SDC's of some

of the liquids, and the observed splittings agree well with the results from

gas-phase UPS spectra. A new spectrometer for the measurement of EDC's of

liquids is described. The liquids studied are 6-chloro-l-hexanol,

2-ethyl-l-hexanol, ethylene cyanohydrin, ethylene glycol, 1,5-pentanediol,

tetraglyme, triethylene glycol, tetraethylene glycol.

*Present address: AT&T Bell Laboratories, Room 1-D402, Murray Hill, NJ 07974.

**Present address: Department of Chemistry, Faculty of Science, Osaka

University, Toyonaka, Osaka, 560 Japan.

***Present address: Department of Physics, University of Bern, Switzerland.
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I NTRODUCTION

Three methods are available for the determination of the lowest

ionization energy for photoelectron emission by liquids and solutions:

(i) the determination of the quantum yield Y for emission as a function of

photon energy E, that is, the measurement of the number of emitted electrons

per incident photon as a function of E; (ii) the determination of the kinetic

energy distribution curve (EDC) of the electrons emitted into the gas phase

upon irradiation at a fixed photon energy; (iii) the determination of second

derivative curves (SDC), that is, the derivative of EDC's with respect to

retarding potential. The quantum yield method is of general scope whereas EDC

and SDC determinations are restricted to liquids having such low vapor

pressure that electron-molecule inelastic scattering is negligible in the gas

" phase. The three methods have been applied [1], the quantum yield method to

aqueous solutions of inorganic salts, the EDC method to various organic

liquids, solutions of organic anion radicals and solvated electrons, and the

SDC method to organic liquids. Determination of ionization energies by the

three methods for the same liquid has not been reported to our knowledge.

This comparison is made in the present paper for eight different liquids. The

limitations of quantum yield and EDC methods are also examined, and the

usefulness of second derivative curves (SDC) is demonstrated in the comparison

with gas-phase UPS spectra.

EXPERIMENTAL

EDC's were measured with a rotating disk target [2-4] and a newly

designed optical system (Fig. 1). The exit bea' of monochromator A was

focused through the lithium fluoride window B on the rim of the rotating disk

target C. The monochromator was a McPherson instrument, model 218, with a

- I
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1200-groove/mm grating blazed at 150 nm. The source of radiation was a

modified McPherson model 630 Hinteregger hydrogen lamp with a hot filament.

The window B separated the monochromator and the mirrors D (coated with MgF 2

and optimized at 120 nm) frou, the target chamber filled with the organic vapor

from the liquid sample. The target chamber was continuously evacuated with a

4-inch diffusion pump and a cryocenic pump J. The latter was a copper

cylinder (9 cm radius, 20 cm long) maintained at -30°C by circulating

coolant. The attenuation of the photon flux in the vapor phase was quite

negligible because of the prevailing very low vapor pressure (10- 3 torr).

The photon flux was monitored by means of the converter E (platinum wire

coated with sodium salicylate) and the photomultiplier F (Hamamatsu model

R647). The stray light level was also taken into account.

The target C was an hexagonal disk (0.25 inch thick, 1.5 inch

diameter). The focused light spot on the rim of the disk was 2 x 8 mrr.

Measurements were synchronized with rotation (7.2 Hz) of the hexagonal disk in

such a way that the liquid film being irradiated was horizontal when data were

taken. The liquid was cooled by a coldfinger in contact with the external

bottom of the sample container. The temperature of the liquid was monitored

by a thermocouple and was held constant within 0.2 degree. Operation near the

freezing point of the liquid was avoided to prevent accidental freezing of the

liquid surface as a result of evaporation.

Retarding potential curves at given photon energies were obtained by

varying the potential of the hemispherical collector grid G with respect to

the liquid. The sample was made conductive by addition of a trace of lithium

chloride or iodide (10-4 V:). The contribution to photoelectron emission

from the added salt was totally negligible. Contact with the liquid was made

by a silver electrode coated with silver chloride or iodide to achieve a
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stable electrode potential in the dilute halide solution in the target

container. Escape of energetic electrons through the grid G was prevented by

the grid H maintained at -5 V with respect to the collector grid G. Gas-phase

photoionization in the target chamber was negligible because of the very low

vapor pressure.

EDC's were obtained from retarding potential curves by analog

differentiation through superposition of a low (0.2 V peak to peak) AC voltage

on the DC retarding potential. The resulting AC component of the collected

current was measured while the DC retarding potential was scanned, and plots

of the AC signal as a function of the DC potential were taken as the EDC [4].

' The entire experiment was automated and controlled by a Digital Equipment

Corp., model PDP-11/34 computer. Nine scans were obtained for each EDC with

the same sample under identical conditions, and each point on the curves of

Fig. 2 represents the average of the nine measurements.

The resolution of the spectrometer expressed as the full width at half-

maximum of a band was estimated [4] at ca. 0.5 eV. The resolution of the

analyzer was ca. 0.3 eV, which is typical [5] for the retarding potential

method. The other contribution arose from the monochromator whose slits were

open at 2 mm (to achieve a sufficient photon flux).

Quantum yield spectra were determined with the equipment used in

earlier work [6] after numerous improvements [7]. The instrument resolution

was better than 0.1 eV at 10 eV and lower photon energies.

IONIZATION ENERGIES

Energy Distribution Curves

The EDC's (Fig. 2) of eight liquids selected for their very low vapor

pressure were determined under the conditions of Table 1. The zero of the

abscissa scale was taken at the inflection point of the EDC ascending branch

I
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in agreement with standard practice in the study of photoelectron emission by

condensed phases (see, e.g., ref. 8 for molecular crystals). The threshold

energy Et (Table 1) for the lowest ionization band of the liquid was

determined from the relationship, Et = E - Tmax, where E is the photon

energy and Tmax the kinetic energy obtained by extrapolation of the

essentially linear segment in the high-energy tail of the EDC (Fig. 2). This

procedure follows directly from the Brodsky-Tsarevsky theory of photoelectron

emission by liquids [9,10]. The extrapolation strictly holds for measurements

of the kinetic energy corresponding to the velocity component of electrons in

the gas phase which is normal to the emitting liquid surface. Brodsky has

argued [9,10] that experimental EDC's of liquids obtained by the retarding

potential method essentially satisfy the foregoing conditions.

Comparison of the Et-values from EDC's in Table 1 is possible only

for ethylene alycol on the basis of the EDC's in [11,12] obtained at 21.2 eV.

Application of the linear extrapolation of the EDC tail to Fig. 7 in [11]

* yielded Et = 8.3 eV in excellent agreement with the value Et = 8.36 eV in

Table I. Conversely, Fig. 2 in [12] yielded the higher value of Et = 9.0

eV. The difference between the energies in [11] and [12] was ascribed in [13]

to an inadequate determination of the zero of kinetic energy in [12]. The

abscissa of 21.2 eV in Fig. 2 of [12] corresponds to the peak of the EDC

whereas one would expect the zero of kinetic energy to be at the midpoint of

the ascending branch of the EDC. This is indeed the case for Fig. 7 in [11]

and in later work (Fig. 1 in [14]) from the laboratory in which the work of

[12] was done. The corresponding shift in Fig. 2 of [12] is ca. 0.8 eV, and

the corrected value of Et is then ca. 9.0 - 0.8 = 8.2 eV in rather good

agreement with the values of 8.3 eV obtained from [11] and 8.36 eV in Table I.
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Quantum Yield Spectra

Quantum yield curves, Y against E (Fig. 3), can be approximated

[5,9,10] by the functional dependence (E - Et)n on photon energy, where

* Et is the threshold energy and the exponent n is taken to be 3, 5/2 or 2

depending on the range of E above Et. The value n = 3 holds very near the

threshold energy Et whereas n = 5/2 and n = 2 apply successively at higher

photon energies. Such a functional dependence of the yield Y on photon energy

is not rigorous. Moreover, the threshold energy Et varies with the photon

energy E at which Y is measured because of the dielectric dispersion of the

liquid [7,15]. Variations of Y1In with E therefore are modulated by the

dispersion effect. Correction of Et for dispersion is possible [15] from

the experimental dependence of the real and imaginary parts of the dielectric

constant of the liquid on photon energy, but such data are not available for

the liquids studied here. If the fitting range is sufficiently large, the

distortion of y1/n vs. E plots caused by dispersion can be taken to average

out, and the emission threshold can be found by a least-square treatment.

This was done here at photon energies sufficiently remote from Et for the

value n = 2 to hold (Fig. 4). The choice of the exponent n is not critical,

and plots of Y2/ 5 against E yielded threshold energies which were only 0.16

eV lower on the average than the values of Et deduced from the plots of Fig.

4.

Comparison of Threshold Enerqies from EDC's and Yield Spectra

Threshold energies from EDC's and yield spectra are comparable (Table

1), but the EDC values of Et are on the average higher by 0.15 eV than the

Et's from yield spectra. This systematic shift appears to be an artifact of

instrumental origin. The resolution of the EDC spectrometer is definitely

lower than that of the instrument for the determination of quantum yield

0-
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spectra (see Experimental). Hence, the descending tail of EDC's is distorted

and poorer in high-energy electrons than it would be with higher instrumental

resolution. The segment of the EDC therefore extrapolates to an energy Tmax

which is too low, and the threshold energy Et = E - Tmax (E, photon

energy) is too high. Moreover, differences between the two sets of threshold

energies in Table 1 are not surprising since the extrapolation methods by

which the Et's were obtained are approximate on several counts: (i) The

distribution of configuration in the liquid is not considered in the theory of

N emission in refs. 9 and 10. The EDC's therefore do not fall off until the

maximum kinetic energy Tma x is reached, as predicted by theory, but exhibit

a drawn-out tail (Fig. 2). Selection of the segment of EDC tail taken to be

linear is not totally unambiguous (e.g., for the EDC of ethylene cyanohydrin

in Fig. 2). (ii) Threshold energies from yield spectra depend somewhat on the

range in which yN/2 is presumed to vary linearly with E. (iii) These

extrapolation methods apply to liquids exhibiting a single ionization band

widely separated from higher bands. This condition is not fully satisfied for

some of the liquids studied here, as will be shown in the next section, and

extrapolation of the EDC and Y1 /2 plots to Et is affected accordingly.

SECOND DERIVATIVE CURVES AND CORRELATION WITH GAS-PHASE UPS SPECTRA

Second derivative curves [16] (SDC) of retarding potential curves were

determined for the liquids of Table 1. The SDC's (Fig. 5) were obtained by

numerical differentiation of EDC's using 5-point Savitzky-Golay filters

0 [17,18]. SDC's exhibit a maximum at the kinetic energy Tmax (SDC) such that

the energy, ESDC = E - Tmax(SDC), is independent of the photon energy E.

According to ref. 16, the energy ESDC is higher than the ionization

energy by 0.52w 112 (SDC), where wl/ 2 (SDC) is the half-width of the

[

K .......
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high-energy descending branch of the SDC. The method of determining

Wl 2 (SDC) is illustrated for curve 6 in Fip,. 5. The difference

Et(EDC) - ESDC therefore should be proportional to Wl/ 2 (SDC) if one

identif; s the threshold energy Et(EDC) obtained from EDC's with the

ionization energy. This relationship is verified (Fig. 6) quite well for the

liquids of Table 1 since a least-square fit of the eight points of Fig. 6

yields a slope of 1.010+0.106 and intercept of 0.067*0.045. These results can

be approximated by the relationship

Et(SDC) = ESD C - 1.1wl/ 2 (SDC). (1)

The resulting threshold energies E t(SOC) agree within 0.1 eV with the Et s

obtained from EDC (Table 1). The difference between the coefficient 1.1 in
eq. (1) and the theoretical value 0.52 in ref. 16 arises from SDC distortion

caused by the low spectrometer resolution and the limitations of the classical

model used in [16].

SDC's of liquids having well-separated ionization bands exhibit

successive bands not unlike the corresponding gas-phase UPS spectra but

without the detailed structure observed in the latter. This is not the case

for EDC's which generally exhibit (Fiq. 2) a sinqle descending branch (except

sometimes for EDC's obtained at 21.2 eV [11]). SDC's therefore complement the

results obtained from EDC's and quantum yield spectra and they allow

comparison with oas-phase UPS spectra.

Multiple bands were evident in the SDC's (Fig. 5) for most of the

liquids of Table 1. The SDC of 6-chloro-l-hexanol may be compared with the

gas-phase UPS spectrum of chloroethanol [19], and the separation of 0.44 eV

between the two SDC maxima is comparable to the difference, 11.45 - 10.90 =

0.55 eV, between the first two ionization energies of chloroethanol. The SDC

of 2-ethyl-l-hexanol is comparable to the gas-phase UPS spectrum of pentanol
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[20] inasmuch as the first peak is followed by a very broad band consisting of

overlapping bands typical of alcohols. The SDC of ethylene glycol exhibits

two maxima separated by 0.63 eV whereas the first two gas-phase ionization

energies differ by 0.67 eV [12,21]. The SDC of tetraglyme may be compared

with the gas-phase UPS spectrum of ethylene glycol dimethyl ether because of

the similarity in structure, namely H(CH 2OCH 2 )5 H (tetraglyme) and

H(CH 2OCH2 )2H. The five oxygen atoms in the tetraglyme are the

counterparts of the two oxygen atoms in the ether. The gas-phase UPS spectrum

of the ether exhibits [21] a lone pair splitting of 0.28 eV, and therefore the

very broad SDC band of tetraglyme is assigned to five closely spaced

overlapping bands.

CONCLUSIONS

(i) Threshold energies obtained from EDC's and quantum yield spectra

aqree except for a small shift (0.15 eV) arising from the spectrometer's

rather low resolution and a small difference (0.15 eV or less) introduced by

the approximate extrapolation methods thus applied. (ii) Threshold energies

from EDC's and from SDC's agree to within 0.1 eV after correction for the

half-width of the high-energy branch of the SDC. (iii) Good correlation

exists between the second derivative curves of liquids and the corresponding

gas-phase UPS spectra.
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TABLE 1

THRESHOLD ENERGIES FROM EDC'S, Y1 /2 VS. E PLOTS AND SDC's

symbol liquid tempa photon Et Et ESDC Et b

in (EDC) energy from from yield from

Fia. 2 EDC spectrum SDC

(C) (eV) (eV) (eV) (eV) (eV)

1 6-chloro-1-hexanol -14 10.6 9.14 8.86 9.30 9.15

2 2-ethyl-l-hexanol -17 10.2 8.76 8.45 9.05 8.85

3 ethylene cyanohydrin -14 10.4 9.31 9.04 9.85 9.41

4 ethylene glycol -11 10.2 8.36 8.04 8.76 8.43

5 1,5-pentanediol -9 10.6 8.67 8.65 9.05 8.63

6 tetraglymec -14 10.0 8.09 8.03 8.71 8.09

7 triethylene glycol -4.5 9.6 8.05 8.2? 8.63 8.06

8 tetraethylene glycol -3 10.0 8.13 8.04 8.85 8.15

aYield spectra obtained at O°C. Corresponding vapor pressures (in torr) from

data in [22-24]: <10 -1 (1), <10 - 2 (2), ca. 1 (3), <10 -2 (4), <10 -1 (5),

<10 - 4 (6-8).

bfrom eq. (1).

Ctetraethylene glycol dimethyl ether.

I
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Figure Legends j
Figure 1. Optical system for the determination of EDC's. A, vacuum UV

monochromator; B, lithium fluoride window; C, hexagonal rotating disk target;

D, folding and focusing mirrors; E, platinum wire coated with sodium

salicylate; F, photomultiplier; G, collector grid; H, grid electrode at -5V

with respect to G; J, cryogenic pump.

Figure 2. EDC's of the liquids of Table I and extrapolation to the kinetic

energy Tmax' Zero of ordinate scale shown for each EDC.

Figure 3. Quantum yield Y (electrons collected per incident photon) against

photon energy E for the liquids of Table 1. Zero of ordinate scale shown for

each curve.

Figure 4. Plot of Y1/2 against photon energy E for the data of Figure 3 and

the liquids of Table 1. Zero of ordinate scale and extrapolation to the

threshold energy Et shown for each liquid.

Figure 5. SDC's of some of the liquids of Table 1. The kinetic energy

T (SDC) displayed for each maximum. Zero of ordinate scale shown for each
* max

SDC. Determination of wII2 (SDC) of eq. (1) shown for curve 6.

Figure 6. Correction for the half-width w112(SDC) of SDC's. Straight line

from a least-square fit.
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